
sity; O, model temperature; a, regularization parameter; 6L2, integral error: of' experimental 
temperature. Indices: : max, maximum value; pul, pulse. 
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HEAT CONDUCTION IN THE QUASISTEADY HEATING OF MATERIALS 

K. B. Isaev and Yu. B. Polezhaev UDC 536.2+536.2 .01 

In determining the thermal conductivity of ablative thermally protective materials 
(APM) by solving thz inverse (coefficient) problem of heat conduction (ICP): and calculating 
the temperature fields in thermally protective coatings based on suchmaterials, investiga- 
tors encounter several difficulties. The main difficulty relates to the indeterminateness 
of certain parameters and eharacteristlcs in the mathematical model of heat transfer for 
these materials under conditions of intensive unidirectional heating. Foremost among these 
parameters and characteristics are the temperature dependences of the density and volumetric 
specific heat of the given material at high temperatures and the parameters of decomposition 
of the binder of the APM. 

Here, we use the example of th~ quasisteady regime of heating of APM (steady-state 
ablation) to analyze the effect of these factors on the thermal conductivity and tempera- 
ture field of the APM. 

With allowance for the heat: sinks, we will represent the solution of the direct heat 
conduction problem (DCP) for quasisteady heating of an:APM presented in [I] in the form 

1 ~r tz ~, (T) dT 
x - - , V  .~ r r 00= r r 0,o (i) .[  r/dr- A , ,  .[ dr - -  c, i .I dTdT 

OT OT r, T. r, r, 

In the heating regime being considered here, the capacity of the internal heat sinks has 
the form 
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Using (i) to solve the ICP, we obtain the following method of determining the thermal 
conductivity of an APM. Using thermocouples, we determine the change in temperature over 
time in some cross section of the test material during quasisteady heating. We divide T(T) 
into N intervals. Assuming that the thermophysical characteristics (TPC) of the material 
are piecewise-constant functions of temperature and performing some simple transformations 
of Eq. (1), we obtain 

, AT E Cvioi--AH* dT - -  c= .t aT 
i~;  To To To 

In the case of a quadratic temperature dependence of the density of the APM in the pyroly- 
sis zone, the theoretical relations for determining the thermal conductivity of the APM 
have the form 

VZACmCv" T O ~.~ T < T b , 

In + ,._, 

V2A'v,.Co~ 

! 
'. AT ZCvf~-Fgor T " - T b  )2[AH*H-(Tm Tb)Cg/3] ) 

;.:, Te - - T  b 

In 

VZA'r.~Cv., 

T b < 7' <.i T e, 

ATCv,,, ') ' 
1 + . . . .  , 

. A T . ~  Cv;~ -I- [)oCF 1-~ [AH* -~- (3T., -- 2T e -- Tb) ce./3t 
i :=]  

(3) 

To realize the above-described method, it is necessary to know the temperature at which 
pyrolysis of the polymer binder of the APM begins and ends. These temperatures depend appre- 
ciably on the heating rate [2] and are distinct, unlike, for example, the melting point of 
crystalline substances. Thus, below we propose a method of evaluating these temperatures 
under conditions of intensive unidirectional heating. The method involves the use of the 
same experimental data as is used in determining X(T). 

We use the first relation of (3) to determine X(T) throughout the range T0-T w and we 
use the extrema of this function to evaluate the temperatures at which pyrolysis of the 
binder beings and ends (curve 4 in Fig. i). The first extremum-maximum of ~(T) is connected 
with the onset of the formation of secondary porosity in the material as a result of thermal 
decomposition of the binder. At the end of this process, the porosity of the material (coke) 
stabilizes, and heat conduction begins to increase (second extremum). These temperatures 
can be similarly determined in other heating regimes with the use of different methods of 
solving the ICP. 

Equations (1)-(3) were used to analyze the effect of different factors on the thermal 
conductivity and temperature field of an APM. Here, we made use of the decomposition parame- 
ters of the epoxy binder, along with the temperature dependences of the thermal conductivity 
and volumetric specific heat of the epoxy glass-fiber-reinforced plastic obtained in [3]. 

It follows from Eqs. (i) and (2) that both the temperature field and the thermal con- 
ductivity of the APM depend on the integral of the function ~p/~T = f(T). To determine the 
degree of the effect of different temperature dependences of the density of the material in 
the binder pyrolysis zone on T(x) and A(T), we performed calculations with Eqs. (I) and (2) 
using different p(T). The latter was obtained from thermogravimetric analysis data for an 
epoxy glass-plastic (Pz) in [3] and the quadratic (P2) and linear (P3) relations for the 
density of the binder in the pyrolysis zone. 
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Fig. i. Effect of certain factors on the thermal conductiv- 
ity of glass-fiber-reinforced plastic: i) initial X(T); 
2-4) X(T) established at qv ~ 0, Cv(T); qv ~ 0, Cv(T) = 
Cv0; qv = O, Cv(T) = Cv0, respectively (2-4 were established 
from T(x) calculated with Cv(T), the initial %(T), andp~(T)). 
X* = X/Xmax, T * = T/T w (T w = 1600~ 

Fig. 2. Effect of certain factors on the temperature field 
in the glass-plastic: T(x) was calculated with the following 
data: i) the initial X(T), Cv(T)= Cv0, qv = 0; 2) the &nitial 
X(T), Cv(T), qv ~ 0 (main variant); 3) X(T) = X0, Cv(T), qv ~ 
0; 4) X(T) (curve 4, Fig. i), Cv(T), qv ~ 0, x ~ = x/(6.10 -a m). 

The calculations established that the maximum difference from the main variant (pi(T)) 
for the temperature field is roughly +3% with the use of P2(T) and about +6% with p3(T). In 
all three cases of the temperature dependence of density in the pyrolysis zone, the tempera-- 
ture field was calculated with the same %(T) and Cv(T). To calculate T(x) with 02(T) and 
pB(T), we first determined the temperatures of the onset and termination of decomposition of 
the binder by the method described above (extrema on curve 4 in Fig. i). Here, we used the 
temperature fieldof the main variant. These temperatures were determined with zero and 
-7.8% errors, respectively. The use of the linear and quadratic temperature dependences of 
density leads to an increase in X(T). The maximum deviations are +14.9 and +6.4%, respec- 
tively. 

Thedata presented above indicates that thermogravimetric studies of an APM arenot 
necessary either to calculate the temperature field or to establish the thermal conductivity 
of the material (by solving the ICP). It is necessary only to determine the temperature cor- 
responding to the onset and termination of binder decomposition. These temperatures are 
determined using the same experimentaldata as was used to determine X(T) (i.e., no special 
experiments need to be performed). Assigning a quadratic temperature dependence for the den- 
sity of the material, we can calculate the temperature field and thermal conductivity with 
an accuracy sufficient for engineering purposes. 

Although the above analysis was performed for a quasisteady heating regime, it is evi- 
dently also valid for other regimes, since it is necessary to integrate the heat conduction 
equation in any case. 

When the thermal conductivity of an APM is determined by solving the ICP, the tempera- 
ture dependence of the volumetric heat capacity of the material is often unknown. The ef- 
fect of constancy (at 20~ of this characteristic on X(T) for the test material (with q~ 
0) :is shown by curve 3 in Fig. i. The maximum deviation of this curve from the initial 
X(T) (curve i in Fig. i) is approximately -29%. Allowance for the temperature dependence 
of the volumetric heat capacity of the material (qv ~ 0) leads to a maximum error of +4~. 
The X(T) established with Cv(T) lies somewhat higher than the original X(T) throughout the 
investigated temperature range. However, this difference is small enough so that, except 
for the temperature range corresponding to pyrolysis of the binder, the established X(T) 
nearly coincides with curve 1 in Fig. i. 
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The greatest deviation of the established X(T) from the initial relation occurs in the 
case of constancy of volumetric heat capacity and equality of the internal heat sinks to 
zero (curve 4 in Fig. i). The maximum deviation is -59.4% at T w. 

The literature data on the heat of decomposition of binders and the mass heat capacity 
of their gaseous decomposition products has a large scatter. An analysis of the effect 
of these factors [alternate triviality of AH and cg in (2)] on the established thermal con- 
ductivity of the material shows that the established k(T) differs from the initial relation 
at temperatures greater than the temperature at which decomposition of the binder ends. Mean- 
while, triviality of the heat capacity of the binder's gaseous decomposition products has the 
greatest effect (the maximum deviation is -29%, while it is -6.4% at AH = 0). Thus, the 
error of Cg has the greater effect on k(T) in the solution of the ICP. 

In connection with the fact that the temperatures of the onset and termination of py- 
rolysis of the binder of the glass-plastic were obtained with a small error, we established 
X(T) with different variants of change in these temperatures by •176 (• and • re- 
spectively). The maximum deviation (+22.2) of the established X(T) from the initial rela- 
tion was obtained with a simultaneous reduction in the temperature corresponding to the 
onset and termination of binder pyrolysis. 

If we use Eq. (i) and the results for X(T) shown in Fig. I to calculate the temperature 
fields in an APM with the same values for surface temperature and linear ablation rate, we 
find the following to be true. When T(x) is calculated with the temperature dependence of 
the thermal conductivity of the material [established using Cv(T) and qv ~ 0, which nearly 
agrees with the initial X(T)], a constant volumetric heat capacity (at 20~ and triviality 
of the internal heat sinks, then there is a significant difference from the temperature 
field of the main variant (curves 1 and 2 in Fig. 2). Meanwhile, the maximum deviation with 
respect to temperature is approximately +200%. In the given case, we used the complete 
mathematical model of heat transfer in an APM to determine the thermal conductivity and we 
use a simplified model to calculate T(x). A similar result was obtained with the opposite 
formulation, i.e., when I(T) was determined using the simplified mathematical model of heat 
transfer (curve 4 in Fig. i) and T(x) was calculated using this established X(T) and the 
temperature dependence of volumetric specific heat with allowance for the heat sinks (curve 
4 in Fig. 2). In this case, the maximum deviation for temperature from T(x) of the main 
variant (curve 2 in Fig. 2) is -63%. However, if X(T) is determined from the temperature 
field of the main variant even with Cv0 and qv = 0 and if we use this data to calculate T(x), 
then this temperature field agrees completely with the T(x) of the main variant, i.e., all 
of the "shortcomings" of the mathematical model of heat transfer in the material are compen- 
sated for by the thermal conductivity. 

Calculation of the temperature field with a constant thermal conductivity (20~ the 
temperature dependence of volumetric heat capacity, and the presence of heat sinks (curve 
3 in Fig. 2) also leads to a large deviation from T(x) of the main variant. Failure to al- 
low for the temperature dependence of thermal conductivity when calculating the temperature 
field in the APM has two consequences: It leads to a sizable error; it leads to a change 
in the character of T(x) (compare curve 3 with curves i, 2, and 4 in Fig. 2). 

Thus, consistent mathematical models of heat transfer in an APM must be employed when 
determining the thermal conductivity of this material and when calculating the temperature 
field from thermal conductivity. Only in this case can a minimal error in the calculation 
of T(x) be obtained. Although this conclusion follows directly from Eqs. (i) and (2), the 
above analysis was performed with a specific example to qualitatively show the large errors 
that can result from inconsistency of the mathematical models of heat transfer in an APM in 
the solution of the inverse and direct heat conduction problems. A similar situation will 
prevail in other cases where heat transfer in materials is complicated (such as in translu- 
cent materials). 

NOTATION 

x, coordinate of the movable coordinate system connected with the moving surface of the 
material; V, linear ablation rate; T, temperature; p, density; X, thermal conductivity; C v, 
volumetric heat capacity; AH* = AH; ~[ , content of binder in the material; AH, heat of de- 
composition of the binder; cg, heat capacity of the gaseous decomposition products of the 
binder; F, gasification coefficient of the binder; To, initial temperature; T w, temperature 
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of the surface; 90, density of the initial material; Tb, Te, temperature of beginning and 
end of binder decomposition; Ax m = Axm/V, time necessary for the temperature in the chosen 
cross section of the specimen to increase from Tm_ I to Tm; ai, unit function; ~m = (Tm + 
Tm_1)/2, i = ,~; m = i + i; AT = T m - Tm- I. 
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IDENTIFICATION OF THE COMBUSTION FRONT OF AN OIL RESEVOIR 

N. I. Nikitenko UDC 536.24 

A method is proposed for determining the rate of movement of the combustion 
zone in an oil resevoir from temperature perturbations of the earth's surface 
layer. 

One of the most promising methods of increasing the yield of heavy and viscous fuel 
from oil resevolrs is the creation of a combustion zone in the resevoir. Realization of 
this method involves the creation of a system of igniting wells and operating systems. 
The combustion front, initially coincident with the surface of the igniting well, moves 
continuously in the direction of the operating wells at a rate of 5-15 cm a day. The form 
and velocity of the front depend on several factors, including the heterogeneity of the 
resevoir, the number and location of the operating wells, the physical properties of the 
resevoir, the composition, concentration, and rate of extraction of the oil, and the con- 
sumption of injected air. 

It is necessary to control the combustion process in order to ensure stable resevoir 
combustion, an optimum shape for the combustion front, and fuller coverage of the height 
of the resevoir by the front. In order to examine the feasibility of using recorded tem- 
perature perturbations of the earth's surface layer caused by a combination front to deter- 
mine the position of the front, the problem of heat transfer in a rock mass was examined 
with the following assumptions. The temperature field in the mass is described by the heat 
conduction equation. Before the beginning of combustion of the resevoir, the temperature 
field is a function of a single space coordinate z. The z axis is directed along an inter- 
ior normal to the earth's surface. Boundary conditions of the third kind exist on this sur- 
face. In the subsurface layers of the earth (z > z*), the temperature can be assumed to 
be independent of time. A combustion front develops at the moment of time �9 = 0 in the 
resevoir Zin ~ z ~ Zex. The front is a right circular cylinder of finite length H ffi Zex -- 
Zin with its axis parallel to the z axis. The readius of the base of the cylinder is a 
function of T: R = R(~). During the period of time 0 < �9 < ~', when R(T) < s, the combus- 
tion zone retains the form of a circular cylinder. At T > x', the zone takes the form of 
a hollow circular cylinder. The rates v of the change in the radii of the internal tin and 
external cylinders are the same, i.e., R - tin = s. The temperature on the combustion 
front does not change over time. 

The combustion front is identified from the values of excess temperature relative to 
the unperturbed temperature field in the rock mass. The excess temperature function satis- 
fies the following system of equations: 

cp Ot(r' z' x) -- 0 (L Ol(r' z' x) Oz dz ff rl O ( d r  r~ Ot(r, z, ~) ; (1) 
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